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ABSTRACT: Reasonable optimization scheduling of flexible work shop will greatly reduce 

process costs and improve production efficiency. This paper creatively builds a neighborhood 

search and genetic hybrid algorithm that allows for idle time, and applies it to the shop floor 

optimization scheduling. The proposed algorithm is tested for feasibility by a typical example 

and compared with other algorithms. Here, we investigate the semi-active, active and fully 

active decoding modes in the production scheduling process, and build an idle time 

neighborhood structure on critical path of production scheduling. It is also analyzed that there 

should be constraints for ensuring scheduling algorithm has a feasible solution in the transfer 

process. A search method for idle processes in different cases on the critical path is given 

herein. The integration of neighborhood search method with the traditional genetic algorithm 

can effectively improve the solution precision and efficiency of the algorithm. The results from 

simulation test show that relative deviation of the proposed algorithm is 0.22, far lower than 

that of other traditional algorithms, which further demonstrates the superiority of overall 

computation performance of the proposed algorithm. With the conclusions derived herein, it is 

certain to provide the clue to optimizing large-scale production scheduling. 

KEYWORDS: production shop scheduling, neighborhood search, genetic algorithm, 

simulation, decoding mode. 

 

1 INTRODUCTION  

Job-shop Scheduling Problem (JSP) is a 

simplified model for practical production 

scheduling of manufacturer. It is attributed to 

reasonable arrangement of product transportation 

and machining sequence, normal service schedule 

for process equipment, and the reduction of 

additional production energy consumption in the job 

floor that the production cost can be significantly 

cut down, and the production efficiency can be 

improved. It is more significant for the production 

scheduling of flexible job shops (Vinod & 

Sridharan, 2008; Dong et al., 2012; Torabi et al., 

2005; Barbosapóvoa, 2005; Liu et al., 2008). 

The JSP is mainly solved by two algorithms, i.e. 

accurate and approximation algorithms. Accurate 

algorithm mostly applies the operations research or 

mathematical programming to solve well-

established production scheduling model 

(Ramezanian et al., 2013; Mohammadi & Jafari, 

2011). For example, Luh et al. improved the 

traditional job shop scheduling based on the 

Lagrangian relaxation method (Luh et al., 2000); 

Fernandes et al. adopted the branch and bound 

method to limit the search space of non-optimal 

solutions, thereby improving the evolutionary 

efficiency of algorithm in the search process of 

optimal solution (Fernandes, 2007); Aiex et al. used 

the parallel acceleration processors to optimize 

traditional branch and bound method and apply the 

improved method to the job shop scheduling (Aiex 

et al., 2003). The accurate algorithm can obtain an 

optimal solution when the production scheduling 

scale is small, but there is a huge computing burden. 

The exact algorithm is no longer applicable as the 

problem scale is enlarged (Wu et al., 2003). The 

approximation algorithm has been widely used for 

solving large-scale JSPs due to its shorter 

computation time and high quality of approximate 

solutions (Zhang et al., 2018). Approximation 

algorithms mainly include the heuristic scheduling, 

artificial intelligence scheduling, and computational 

intelligent scheduling methods (Zoghby et al., 2005; 

Goryachev et al., 2012; Shi et al., 2012; Liu et al., 

2008). 

It has been discovered from available literature 

that two or more optimization algorithms are 

hybridized to supply their respective gaps. In this 

way, the search capacity and convergence 

performance of individual algorithm can be 

improved (Tonelli et al., 2013; Clausen & Ju, 2006). 

For example, Zuo et al. merged the artificial 

immune algorithm with the emergency search 
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algorithm, and used the fused algorithm to solve the 

flexible job shop scheduling (Zuo & Tan, 2012); 

Gao et al. integrated local search algorithm with 

cultural algorithm and applied it to the solution of 

JSP model (Gao et al., 2011); Rego et al. took the 

bottleneck movement strategy to improve the 

neighborhood search algorithm (César & Duarte, 

2009). Ren et al. used the local search algorithm to 

improve the traditional genetic algorithm (Ren & 

Wang, 2012). The above hybrid algorithms have 

yielded certain fruits for the optimal scheduling of 

the flexible work shop. 

Based on existing study, this paper creatively 

builds a neighborhood search and genetic hybrid 

algorithm that allows for idle time, and applies it to 

the production job shop optimization scheduling. It 

is tested for feasibility by a typical example and 

compared with other algorithms. With conclusions 

derived herein, it is useful for providing the clues to 

optimizing large-scale production floor scheduling. 

2 PROBLEM DESCRIPTION 

The traditional workshop production scheduling 

can be described as such a line that n products 

should be machined on some machines according to 

certain process path, and the product is not allowed 

to access the next machine for machining until the 

machining process has been finished on the 

previous machine, and the production process can't 

stop midway once it starts. 

The objective function is to minimize the 

production machining time. 

 (1) 

 

Fig. 1 Gantt and disjunction maps of job shop 

scheduling 

The job shop production scheduling is described 

by taking three products J1 - J3 and three machines 

M1 - M3 as examples. The Gantt and the disjunction 

diagrams of the production workshop scheduling 

under the above conditions are shown in Fig. 1. 

 

In Fig. 1(a), the machining path in the direction 

of the arrow is the critical path of the production 

floor, and the path in the disjunction map is the 

longest from 0 to #, that is, the path as indicated by 

the arrow in the dotted line. The Gantt and 

disjunction maps can be used to determine the 

optimal machining sequence of products and the 

feasible solution of the scheduling. 

3 NEIGHBORHOOD SEARCH 

ALGORITHM ALLOWING FOR 

MACHINING IDLENESS TIME 

3.1 Neighborhood structure  

In the production scheduling scheme design, the 

product machining process code is first generated, 

when is then decoded to obtain the Gantt chart for 

scheduling. As shown in Fig. 2(a) and Fig. 2(b), the 

process in which the typical semi-active decode is 

converted into active decode which is then 

converted into full-active decode in the production 

scheduling decoding mode are given there. 

 
(a) Semi-active decode is converted into active 

decode 

 
(b) Active decode is converted into full-active 

decode 

Fig. 2 Conversion of production processing 

scheduling decoding modes 

 

The initial machining time of the process n of 

semi-active decoding is the maximum of finishing 

time of all products in the previous process; the 

active decoding is to optimize based on semi-active 

decoding, and all machining processes are shifted to 

the left. The full active decoding is further to move 

all machining processes to the right based on active 

decoding. In addition to semi-active decoding, the 
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other two decoding modes can be allowed to move 

the processes only at the idle time period of 

machining. 

Some processes can be deferred in production 

process to reduce shorter slots of idle time, thus 

diminishing the holistic machining time of 

production scheduling. Further illustrate by Fig. 3, 

as the idle time slot analysis of the Fig. 1 Gantt 

chart for scheduling, wherein Fig. 3(a) illustrates 

that on the critical path (indicated by the arrow in 

the figure) of the initial planning, the latter process 

starts immediately after the previous process is 

finished, and there is no idle time slot between 

adjacent processes. In the non-critical path, there 

are two smaller idle time slots on the M2 machine, 

within which any process can not be completed. 

The processes (1, 1) are moved to the positions 1 

and 2 in Fig. 3(a), respectively, so that the Gantt 

charts of Fig. 3(b) and Fig. 3(c) are formed. In this 

way, the initial machining of processes (2,2) and (3, 

2) are delayed, but the wholistic machining 

durations of the production workshop are reduced to 

12 and 15, respectively, so that the completion time 

of the product is significantly lessened. 

3.2 Shifting conditions for processes on 

critical path 

The critical path for product machining is the 

major influence factor of the maximum completion 

time of workshop production. Based on the 

neighborhood search algorithm proposed herein, it 

is required to ensure that there is feasible solution 

after the process movement on the critical path. 

In order to ensure that feasible solution always 

exists in production scheduling, this paper defines 

the following 

Theorem 1: Assume the adjacent two processes 

on the one machine are u and v, respectively (u is 

implemented first), and the feasible solution is s; 

when u is the last process of product machining, or 

conversely, and 

 (2) 

It is meant that the feasible solution of the 

workshop production scheduling still exists when 

the process v is preceded the process u. In the 

formula, L is the length of the critical path, and JS[u] 

is the process u after the movement. 

Theorem 2: Assume the adjacent two processes 

on the one machine is u and v, respectively (process 

u is implemented first), and the feasible solution is s; 

when v is the first process of product machining, or 

conversely, and 

 (3) 

It is meant that the feasible solution of the 

workshop production scheduling still exists when 

the process v is preceded the process u. 

 

Fig. 3 Analysis of idle time slots of machines 

 

The above two theorems will be interpreted with 

reference to Fig. 4. After the proves u is moved, the 

positions of all processes in the production are 

rearranged and reset, as shown in Fig. 4(b). When u 

is not the last process of product machining, then 

 (4) 

 (5) 

makespan represents the maximum completion 

time of workshop production. From the above 

relationship, the following conclusions can be 

further derived. 

 (6) 

When v is the first process of product machining, 

then 

 (7) 

 (8) 
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Fig. 4 Impact of the movement of different machining processes on feasible solution of scheduling 

 
The following conclusion can be available 

according to Formulas (3), (7) and (8). 

 (9) 

3.3 Analysis of idle time slots between 

different machining processes 

Further, the idle time search process between 

adjacent processes is described. To make a 

distinction from the analysis of the previous section, 

it is assumed that the adjacent processes are x and y, 

and the maximum idle time between the two is IT (x, 

y), its maximum is 

 (10) 

That is, the initial time of the previous process x 

is the minimum, and the completion time of the next 

process y is the maximum. As shown in Fig. 5, the 

idle time lookup process between adjacent 

processes is analyzed in the form of a Gantt chart. 

In Fig. 5(a), each process in the initial planning 

scheme has its minimum machining and completion 

time slots. All processes in the figure are moved to 

the positions where they are started and finished at 

the latest time within the planned range, as shown in 

Fig. 5(b). In Fig. 5(a), the maximum completion 

time of the processes (3, 1) and (2, 3) on the 

machine M1 is 7, the value IT before the process (2, 

2) and free time after the process (1, 3) are all 3. 

Free time can be available by the idle time search 

process proposed herein can obtain statistically, as 

the foundation for subsequent optimization. 

In Fig. 5, the proposed neighborhood structure 

that allows for the idle time of the processes is 

shown in Fig. 6. Let w be one process on the critical 

path of production scheduling process of the 

workshop, then the maximum idle time of w is the 

difference between the earliest completion time of 

the previous process and the latest completion time 

of the next process. 

 

Fig. 5 Idle job search between adjacent processes 

 

 

Fig. 6 Neighborhood structure that allows for process 

idle time 
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The process conversion does not obtain the 

feasible solution, and may also lead to the existence 

of a non-feasible solution to production scheduling. 

 

Fig. 7 Infeasible solution process formed after process 

transfer 

 

Fig. 7 shows the infeasible solution flow that 

forms the production schedule after process transfer. 

Processes (2, 2) are on the critical path of 

production scheduling. In the machining time slot [4, 

16], there is an idle time slot [4, 5] in front of the 

processes (1, 1). When the processes (2, 2) are 

preceded the processes (1, 1), the deadlock 

phenomenon occurs in 4 processes on the machines 

M2 and M3, which makes the whole production 

schedule infeasible. 

To eliminate the above phenomenon, based on 

the idea of neighborhood search algorithm, this 

paper makes a mobile feasibility analysis of the 

process on the critical path during the production 

scheduling. 

Since there is no idle time between adjacent 

machining processes in the one block, only the idle 

processes should be searched at the initial and 

completion time in the whole process. 

For the first process w in the block, any adjacent 

processes x and y processed before w satisfy the 

following formula: 

 (11) 

Then there is no idle time before the first process 

w, and the idle time search is limited to the 

backward operation. Similarly, when the machining 

process w in the block is the last one, the 

subsequent adjacent processes e and f satisfy 

 (12) 

That is, there is no idle time after w, and the idle 

time search should be performed with the migration 

operation. 

 

3.4 Analysis of idle interval between 

different processes 

Based on the above analysis, the job shop 

optimization scheduling process based on the hybrid 

of neighborhood search and genetic algorithm that 

allows for idle time is shown in Fig. 8. 

 

Fig. 8 Infeasible solution process formed after process 

transfer 

 

4 SIMULATION CASE AND ANALYSIS 

Test the availability of the algorithm proposed 

herein, there are 20 cases used to test the algorithm. 

The problem size of the cases 1 - 5 is 1510; the 

problem size of the cases 6 - 10 is 2010; the 

problem size in the cases 11 - 15 is 3010, and the 

problem size of cases 15 - 20 is 1515. 

The crossover and mutation probabilities are 0.8 

and 0.2, respectively, and the maximum number of 

iterations is calculated as 100 generations. 
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When the algorithm proposed in this paper is 

compared with the traditional production scheduling 

method AIS-TS hybrid algorithm and PSO-AIS 

hybrid algorithm. As shown in Fig. 9, these three 

algorithms obtain their respective optimal 

maximum completion durations Cmax and theoretical 

optimal completion durations Ct. 

With the relative deviation R, the deviation in 

the optimal completion time Cmax and the theoretical 

optimal time Ct between different algorithms 

(13) 

The average relative deviation ave(R) from 20 

cases is available. The average relative deviation of 

the algorithm is ave(R)=0.22. AIS-TS and PSO-AIS 

hybrid algorithms are 0.30 and 0.33, respectively. 

The overall performance of the proposed algorithm 

is significantly better than other algorithms. 

In Fig. 10 (a, b, c) is Gantt chart of production 

scheduling based on calculation cases 5, 7 and 16. 

 

Fig. 9 Optimal completion time statistics of production scheduling with different algorithms 

 

 
(a) Calculation case 

 m ax
R e 1 0 0 %

t t
C C C  

0 2 4 6 8 10 12 14 16 18 20
800

1000

1200

1400

1600

1800

2000
 C

t

 Method proposed

 AIS-TS

 PSO-AIS

C
m
a
x

Problem



ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL.17, ISSUE 3/2019 

89 

 
(b) Calculation case 7 

 
(c) Calculation case 16 

Fig. 10 Gantt chart of production scheduling with three algorithms 

 

5 CONCLUSION 

This paper creatively builds a neighborhood 

search and genetic hybrid algorithms that allows for 

idle time, and applies it to the production job shop 

optimization scheduling. It is tested by the typical 

example and comparing with other algorithms for 

the feasibility. Here come several conclusions: 

(1) The semi-active, active and all-active 

decoding modes in the production scheduling 

process are studied, and the idle time neighborhood 

structure on the critical path of production 

scheduling is then constructed. It is also analyzed 

there should be constraints for ensuring the feasible 

solution of the scheduling algorithm in the transfer 

process. In addition, the search method is given for 

idle processes in different cases on the critical path. 

The neighborhood search algorithm is integrated 

into the traditional genetic algorithm, which 

effectively improves the solution precision and 

efficiency of the algorithm. 

(2) The results from simulation test reveal that 

the relative deviation of the proposed algorithm is 

0.22, far lower than other traditional algorithms, 

which demonstrates the superiority of the overall 

computation performance of the proposed algorithm. 
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