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ABSTRACT: To improve machining quality of teeth profile and transmission performance 

of N-lobed noncircular gear (N-LNG), the calculus of variations is employed to establish a 

modification model of design defect for the pitch curve with concave cusps that takes rotary 

inertia into consideration. A general minimal rotary inertia modification algorithm for pitch 

curve with concave cusps can be developed based on the model. The pitch curve without 

concave cusps for any type of N-LNG can be obtained by applying the proposed method. Outer 

contact and inner contact pitch curves conjugated with the modified pitch curve can also be 

obtained by using the principle of gearing. Several typical examples are implemented in 

computer, and simulation results demonstrate that the research should be helpful in the design 

and manufacture of N-LNG. 
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1 INTRODUCTION 

Noncircular gear pair has been used to 

implement variable transmission and function 

generation with applications in pump, printing, 

packaging, automotive steering, aeronautical ring 

dampers, knee motion assist mechanism, power 

drive mechanism and etc (Litvin, 2004, 2008), 

(Dooner, 2001), (Stefano, 2012), (Terada, 2012), 

(Mundo, 2006). However, because of the complex 

of design and manufacture for noncircular gears 

with discretionary pitch curves, its application is not 

as well as circular gears widely. One of important 

reasons is most research on noncircular gears 

focused on N-lobed or high-order elliptical gears 

(Bair, 2002), (Tsay, 2005), (Tong, 1998). Figliolini 

G. and co-workers proposed a general generation 

method of N-lobed elliptical gears from a basic 

ellipse, and the transmission mathematical models 

among cutter, driving and driven elliptical gears can 

be established in their studies (Figliolini, 2000, 

2003, 2005). Moreover, the synthesis of high-order 

elliptical gears and its hobbing machining method 

can be obtained (Lin, 2013), (Zhang, 2014), 

(Figliolini, 2016). 

More recently, some novel pitch curves of 

noncircular gears can be studied so as to expand its 

application. For examples, Hector, Salvador and et 

al designed an approach for generating pitch curves 

of N-lobed noncircular gears based on Bézier and 

B-spline nonparametric curves (Hector, 2007). Yao 

presented a pitch curve design method, which using 

plane regular N-curved polygon and spiral of 

Archimedes as the pitch curve for N-lobed 

noncircular gear (Yao, 2013). The Archimedes 

spiral, quadratic curve and Pascal curve are applied 

in pitch surface design of noncircular bevel gear 

(Lv, 2016). Noncircular gears with steepest rotation 

pitch curves can be synthesized, and the research is 

applied to modify the pitch curve with discontinuity 

points (Zhang, 2016a, 2016b). 

Because of the complex of manufacture for pitch 

curve with cusps, the pitch curve should be 

reshaped to improve the machining process. 

Therefore, the minimal rotary inertia modification 

model of pitch curve with concave cusps for N-

LNG can be established by the kinematics and 

calculus of variations in this paper due to the large 

rotary inertia will increase mechanical load and 

reduce response of the transmission system. 

Besides, we develop a modification algorithm for 

the design of conjugate pitch curves without 

concave cusps for N-LNGs. Numerical results are 

shown to illustrate the proposed method should be 

helpful in the design and manufacture of 

noncircular gears. They should also be helpful in 

the low load and high response of this type of 

gearing. 
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2 MODIFICATION MODEL OF THE 

PITCH CURVE WITH CONCAVE 

CUSPS 

As shown in Fig.1, points A, B and O are non-

collinear points in the plane, using straight line 

connect the points O and A, and points O and B, 

respectively. Let the X-axis of fixed coordinate 

system (O-XY) coincide with the line OA. While 

using discretionary plane curve r1(η) connects 

points A and B, then ∠AOB is center angle of curve 

r1(η), polar angle η is measured counterclockwise 

from the positive direction X-axis. In order to 

ensure that the closed of the noncircular gear pitch 

curve, curve r1(η) should satisfy the following 

conditions: 

1 1

2 /
 (1)

(0 ) = ( 2 / )

A O B N

r r N

  


  
where N is an integer number. 

 

 

Fig. 1 Design of discretionary closed pitch curve for 

N-LNG 

 

N-lobed closed plane curve r(η) can be obtained 

by rotating the curve r1(η) around the center O, it 

can be expressed as: 

1

1

2
( ) , [0 , ]

( )     (2 )

2 ( 1) 2 ( 1)
( ) ( ) [ , ]

k

r
N

r

k k k
r r

N N N

 



  







 


     

   


M

，

 
where k=1,2,...,N. 

Therefore, discretionary closed pitch curve r(η) 

of N-LNG can be formed by rotating the plane 

curve r1(η) around the center O. 

As shown in Fig.2, points c1, c2, ..., cN may be 

concave cusps (i.e. continuous but non-

differentiable points) of the pitch curve r(η) for N-

LNG. The design and machining of N-LNG have 

great difficulties due to the presence of these 

concave cusps. Modification of the pitch curve with 

concave cusps is necessary and important according 

to processing requirements of N-LNG and positions 

of these concave cusps have a certain rotated period 

2π/N. For convenience, therefore, we just need to 

study the modification model of one concave cusp. 

Assuming the modification pitch curve 

corresponding concave cusp ck (k=1,2,...,N) is 

rMk(η), which used to replace two tiny section pitch 

curves (curves ˛
k k

a c  and ˛
k k

c b ), ak and bk are points 

of tangency that the modification pitch curve rMk(η) 

makes with pitch curve rNk(η) and rN(k+1)(η), 

respectively. Without additional explanation, the 

following discussion relating to subscript k 

(k=1,2,...,N), if k=N, then (k+1)≡1, and if k=1, then 

(k-1)≡N. Assuming the polar angles of points ak and 

bk are ηak and ηbk respectively. So the infinitesimal 

arc dS of modification pitch curve rMk(η) can be 

expressed as: 

2 2

M M
( ) ( )  (3 )

k k
d S r r d   

  
where subscript ‘Mk’ in curve rMk(η) is refer to 

that curve rMk(η) is the modification pitch curve 

rMk(η) for pitch curve rk(η) at the concave cusp ck. 

 

Fig. 2 Modification model of the pitch curve with 

concave cusps 

According to the principle of kinematics and 

differential, assuming the mass of noncircular gear 

pitch curve is m, an infinitesimal dm can be chosen 

on the modification pitch curve rMk(η), its mass is 

dm=λdS, where parameter λ is linear density and the 

value is m/S, then the infinitesimal rotary inertia dJ 

can be expressed as: 
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Substituting Eq.(3) into Eq.(4), the infinitesimal 

rotary inertia differential dJ can be obtained: 

b
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The integral to both sides of Eq.(5) at the same 

time, one obtains: 

b

b
a

a

2 2 2

M M M

M
2 2

M M

( ) ( ) ( )
[ ( ) ]  (6 )

( ) ( )

k

k
k

k

k k k

k

k k

m r r r
J r d

r r d








  
 

  








  

Referring to Eq.(6), we know that the rotary 

inertia J may be different for different modification 

pitch curves rMk(η), the minimum value Jmin of 

rotary inertia J can be expressed as: 
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where 
2

M a b
( ) C [ , ]

k k k
r     refers to rMk(η) 

have 2-order successive derived function at 

a b
[ , ]

k k
   . 

According to the calculus of variations (Lao, 

2015) and generic function F of Eq. (7) doesn’t 

contain parameter η, the first integral of Euler-

Lagrange Equation can be expressed as: 

M
M ( )

( ) =  (8 )
k

k r
F r F h







 
where h is an integral constant. 

Substituting F of Eq.(7) into Eq.(8), we can 

obtain: 
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. 

In order to avoid the occurrence of new concave 

cusps after the changes, the modified pitch curve 

rMk(η) with minimal rotary inertia should meet the 

following differential conditions: 

M a a
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Along with Eq.(9), modification model with 

minimal rotary inertia for the pitch curve with 

concave cusps of N-LNG can be obtained: 
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where s.t. is an abbreviation of “subject to”, it 

means that contained constraint conditions must be 

satisfied by the equation. 

3 ANALYSIS AND SOLUTION OF THE 

MODIFICATION MODEL 

The solution of Eq.(11) is called the 

modification pitch curve rMk(η) with minimal rotary 

inertia corresponding concave cusp ck. Referring to 

Eq.(11), assuming: 

M M
( ) ( ) tan  (1 2 )

k k
r r     

Substituting Eq.(12) into Eq.(11), we can obtain: 
3

M 1
( ) c o s  (1 3 )

k
r h    
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M
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M
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The integral to both sides of Eq.(15) at the same 

time, one obtains: 

2
3 = +  (1 6 )h   

where h2 is an integral constant. 

Along with Eq.(13), the modification pitch curve 

rMk(η) with minimal rotary inertia can be expressed 

as: 

1
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h
r

h
   


 


 

where h1, h2 are undetermined constants, polar 

angles ηak and ηbk must satisfy the following 

constraints due to the value of pitch curve rMk(η) is 

constant greater than zero: 

2 2
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where i=...,-2,-1,0,1,2,.... 

According to Eq.(12) and Eq.(16), the first-order 

derivative of modification pitch curve rMk(η) can be 

obtained: 
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Along with Eqs.(17)~(19), we can obtain: 
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According to boundary conditions rMk(ηak)= 

rk(ηak), rMk(ηbk)= rk+1(ηbk) and differential conditions 

r′Mk(ηak)= r′k(ηak), r′Mk(ηbk)= r′k+1(ηbk), undetermined 

constants h1, h2 and polar angles ηak, ηbk can be 

obtained by the following conditions: 
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Referring to Fig.2, we known that the first-order 

derivatives r′k(ηak) and r′k+1(ηbk) around the concave 

cusp ck should satisfy the following conditions: 
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According to Eqs.(17)~(26), the polar equation 

of the modification pitch curve rMk(η) with minimal 

rotary inertia can be expressed as: 
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Along with Eq.(2), the sketch of modified pitch 

curve rM(η) is shown in Fig.3, and the polar 

equation rM(η) can be expressed as: 
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where subscript ‘M’ in rM(η) is refer to that the 

curve rM(η) is the modified pitch curve rM(η) for 

pitch curve r(η) with concave cusps, polar angles 

ηat, ηbt (t=1,2,...,N and t≠k) should satisfy the 

following conditions: 
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Fig. 3 Sketch of the modified pitch curve rM(η) 
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Furthermore, the mathematical model of pitch 

curves conjugated with the modified pitch curve 

rM(η) which contain outer contact and inner contact 

can be expressed, respectively: 
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where rOM(ηO), rIM(ηI) and aO, aI are the pitch 

curves and center distances of outer contact and 

inner contact noncircular gears conjugated with the 

modified pitch curve rM(η), respectively. 

In order to ensure the closure of pitch curves 

rOM(ηO) and rIM(ηI) conjugated with the modified 

pitch curve rM(η),  the center distances aO and aI can 

be adjusted by the following conditions: 
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where NO and NI are the numbers of lobes of 

pitch curves rOM(ηO) and rIM(ηI). 

4 MODIFICATION ALGORITHM 

Modification algorithm with minimal rotary 

inertia characteristic for the pitch curve with 

concave cusps of N-LNG was produced using the 

foregoing formulations. Referring to the algorithm 

flow chart of Fig. 4, the pitch curve r(η) with 

concave cusps for N-LNG is the known condition, 

concave cusp ck can be chosen by designers, 

arbitrarily. Polar angles ηak, ηbk and undetermined 

constants h1, h2 can be solved by resorting to 

Eq.(25), Eq.(27) or Eq.(25), Eq.(28). The modified 

pitch curve rM(η) can be obtained through 

Eqs.(27)~(30), its conjugate pitch curves rOM(ηO) 

and rIM(ηI) can also be obtained by Eqs.(31)~(34). 

5 MODIFICATION EXAMPLES 

The proposed modification method with minimal 

rotary inertia characteristic was implemented in 

computer to run several typical examples, as shown 

in Figs. 5~8. For convenience, the value of 

subscript k for selected concave cusp ck is 1, without 

additional explanation, the following examples 

relating to subscript k of selected concave cusp ck 

whose value is 1. 

Fig. 5 is the 3-lobed noncircular gear pitch curve 

with concave cusps, its polar equation r(η) can be 

expressed as: 

Undetermined constants h1, h2 and 

polar angles ηak, ηbk can be obtained by 

Eq.(25), Eq.(27) or Eq.(25), Eq.(28)

Concave cusp ck can be 

arbitrarily chosen by designers

Adjusting the center distances aO and 

aI to ensure  the closure of conjugate 

pitch curves by Eqs.(33)~(34) 

Conjugate pitch curves without concave 

cusps for  N-lobed noncircular gears  can 

be obtained by Eqs.(29)~(32)

Modified pitch curve rM(η) can 

be obtained by Eqs.(27)~(30)

Pitch curve r(η) 

with concave cusps 

 

Fig. 4 Flow chart of the modification algorithm with 

minimal rotary inertia characteristic for pitch curve 

with concave cusps 

 

Fig. 5 3-lobed noncircular gear pitch curve with 

concave cusps 
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Along with Eq.(25) and Eq.(27) or Eq.(25) and 

Eq.(28), undetermined constants h1, h2 and polar 

angles ηa1, ηb1 of modification pitch curve rM1(η) for 

the pitch curve r(η) with concave cusps in Fig. 5 

can be obtained, respectively: 
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Substituting Eq.(36) or Eq.(37) into Eq.(27) that 

takes the periodic characteristic of trigonometric 

function into consideration, the polar equation of 

the modification pitch curve rM1(η) with minimal 

rotary inertia can be obtained: 
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Then the modified pitch curves rM(η) for the 

pitch curve r(η) with concave cusps in Fig. 5 can be 

obtained: 
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Fig. 6(a) is the modified pitch curves rM(η) with 

the minimal rotary inertia for the pitch curve r(η) 

with concave cusps in Fig. 5, its conjugate pitch 

curves equations and graphs which contain outer 

contact and inner contact are described in Eqs. 

(40)~(41) and Figs. 6(b)~(c). 
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Fig. 7 is the 4-lobed noncircular gear pitch curve 

with concave cusps, its polar equation r(η) can be 

expressed as: 

 

 

 

 

Fig. 6 Modified pitch curve rM(η) and its conjugate 

pitch curves for the pitch curve r(η) with concave 

cusps in Fig. 5 
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Referring to the modification process of 3-lobed 

noncircular gear pitch curve with concave cusps, the 

modified pitch curves rM(η) with the minimal rotary 

inertia for the pitch curve r(η) with concave cusps 

in Fig. 7 is depicted in Fig. 8(a), its conjugate pitch 

curves which contain outer contact and inner 

contact are described in Figs. 8(b)~(c). 
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Fig. 7 4-lobed noncircular gear pitch curve with 

concave cusps 

Corresponding modification parameters of the 

pitch curve with concave cusps in Fig. 7 are listed 

in Table 1, and the polar equations of modified 

pitch curve rM(η) can be expressed as: 
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Referring to Figs. 5-8, we known that the 

modification accuracy is higher with the decrease of 

the Δη (Δη=ηb1-ηa1). Therefore, designer can choose 

appropriate polar angles ηa1 and ηb1 to ensure the 

requirement of engineering accuracy. 

 

 

 

Fig. 8 Modified pitch curve rM(η) and its conjugate 

pitch curves for the pitch curve r(η) with concave 

cusps in Fig. 7 

Table 1. Modification parameters of the pitch curve r(η) with concave cusps in Fig. 7 
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(Referring to Fig. 8(b)) 
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(Referring to Fig. 8(c)) 
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7 NOTATION 

The following symbols are used in this paper: 

ak, bk= points of tangency; 

aI, aO= center distances of the pitch curves 

rIM(ηI) and rOM(ηO); 

ck= concave cusps; 

dm= infinitesimal mass; 

dJ= infinitesimal rotary inertia; 

dS= infinitesimal arc length; 

h1, h2= undetermined constants; 

k= 1, 2, …, N; 

m= mass of noncircular gear pitch curve; 

r(η)= pitch curve equation of N-LNG; 

rM(η)= modified pitch curve equation; 

rMk(η)= modification pitch curve equation; 

rIM(ηI), rOM(ηO)= pitch curve equations of outer 

contact and inner contact noncircular gears 

conjugated with the modified pitch curve rM(η); 

N= number of lobes; 

NO, NI= numbers of lobes of pitch curves rOM(ηO) 

and rIM(ηI); 

J= rotary inertia; 

Jmin=minimum value of rotary inertia J; 
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S= arc length of the modification pitch curve 

rMk(η); 

ηak, ηbk= Corresponding polar angles of points a 

and b; 

λ= linear density; 

(O-XY)= fixed coordinate system. 


