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ABSTRACT: The production scheduling problem has a negligible influence on the 

production efficiency of manufacturing industry and the development of manufacturing 

companies. In order to find suitable algorithm and improve the scheduling efficiency of the 

production workshop, this paper proposes an improved multi-factor dynamic analysis algorithm 

based on the knapsack problem and several mathematical algorithms, analyzes the complexity 

and the correlation of the production scheduling problem in the workshop, and constructs a 

model for the workshop production scheduling problem. The research shows that the fitness 

landscape analysis helps to predict and understand the algorithm’s spatial search behavior; 

For the three solution methods of the knapsack problem, the longer the distance from the 

optimal solution, the lower the average value, and the distance between the solution and the 

optimal solution is positively correlated with the average value of the item; when the multi-

factor dynamic analysis algorithm is used to solve the scheduling problem of the workshop, 

relative ideal results could be obtained within a limited time period; if the test parameters are 

adjusted accordingly, better results could be obtained. This study provides a theoretical basis 

for improving the production scheduling efficiency of the manufacturing workshop, and has 

certain theoretical and social value for promoting the development of manufacturing industry. 

KEYWORDS: production scheduling, multi-factor analysis, dynamic analysis algorithm, 

combinatorial optimization problem 

 

1 INTRODUCTION  

The production plan of the manufacturing 

enterprise is implemented according to the 

scheduling of the supply chain system. Under the 

existing production processes and equipment 

conditions, the production activity should be 

reasonably planned according to the market 

conditions or customer requirements so as to 

comprehensively improve the optimal performance 

of the supply chain system scheduling (Hu et al., 

2012; Huang et al., 2018; Vand et al., 2018; 

Setiawan et al., 2016; Bierwirth and Mattfeld, 

1999). From the development situation of the 

manufacturing industry and related researches we 

can know that, for manufacturing enterprises, the 

production scheduling is the key technology and 

core content in the manufacturing management 

process (Chryssolouris and Subramaniam, 2000; 

Chen et al., 2012; Masin et al., 2007). Solving the 

minimum processing time of products is one of the 

most valuable optimization methods for the 

production scheduling problem of the workshop. 

Optimizing the production scheduling scheme of the 

supply chain system in the workshop can effectively 

improve customers’ satisfaction of the product 

delivery time, shorten the delivery cycle and 

increase product productivity of the manufacturing 

companies (Vinod and Sridharan, 2009; 

Papadopoulou and Mousavi, 2007). 

The solution and the optimization algorithm of 

the production scheduling problem in the workshop 

lack of standards and theoretical basis, and the 

solutions of the algorithm have a great correlation 

with the characteristics of the scheduling problem 

itself (Käschel et al., 2002; Tang et al., 2014). As 

the most difficult combinatorial optimization 

problem, the workshop scheduling problem is also 

one of the key issues to be solved in the 

manufacturing field (Schruben, 2008; Liu et al., 

2008; Jiang et al., 2017; Ren et al., 2018; Mehrjoo 

and Bashiri, 2013). Single optimization algorithm 

may have defects or inadaptability problems, and 

using combinatorial optimization algorithm to solve 

this kind of production scheduling problems can 

integrate the effectiveness and accuracy of multiple 

algorithms, and it can effectively search for the 

optimal solutions in the solving process (Vinod and 

Sridharan, 2011; Castillo and Gazmuri, 2015). 

Based on the above problems, it is currently a 

top priority to find an efficient algorithm that can 

solve the optimal solution for complex production 
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scheduling problems in the workshops (Markowitz 

and Wein, 2000; Yang and Shen, 2012; Li et al., 

2008). Therefore, based on the existing optimization 

algorithms and the knapsack problem, this paper 

first analyzes the characteristics of the production 

scheduling problem in the workshop, explores the 

factors affecting the structure of the workshop 

scheduling problem, and proposes a combinatorial 

multi-factor dynamic analysis algorithm, thereby 

searching and solving the optimal solutions for the 

scheduling problem and its combination problem. 

This paper provides a theoretical support for the 

study of workshop scheduling problems, and lays a 

theoretical foundation for the algorithm setting of 

such problems and the combinatorial optimization 

problems. 

2 BASIC THEORY OF MULTI-

FACTOR DYNAMIC ANALYSIS 

ALGORITHM 

2.1 Combinatorial optimization problem 

The multi-factor dynamic analysis algorithm 

includes the combinatorial optimization algorithm, 

which can search for the optimal solutions 

continuously in the search process. Generally, 

combining the local search method with the 

intelligent algorithm can improve the effectiveness 

and efficiency of the algorithm. The FDC method 

was first applied to the genetic algorithm, it 

analyzes the combinatorial optimization problem by 

studying the correlation of the distance between the 

function value and the solution. In the coding 

algorithm, the correlation can be obtained by the 

fitness of the function values and the correlation 

coefficient of the distance. The correlation 

coefficient is a pure number without units, and its 

absolute value determines the degree of correlation. 

For a specific problem, if the value of the 

correlation coefficient is very small, it indicates that 

there is a long distance between the obtained 

solution and the optimal solution, and the quality of 

the solution is very poor; if the value of the 

correlation coefficient is very large, it indicates that 

there is a short distance between the obtained 

solution and the optimal solution, and the quality of 

the solution is very good. The optimal solution may 

be in the vicinity of the local optimal solution, and 

this can provide an analysis basis for the fitness 

landscape. The correlation coefficient of the 

solution can guide the range and region of the 

search. When the correlation coefficient is larger, it 

continues to search for the local optimal solution in 

this range; when the correlation coefficient is 

smaller, the search range is expanded to search for 

the global optimal solution. 

The earliest application of the correlation is in 

the genetic algorithm, foreign scientist Gold Berg 

discussed the similarity theory and the genetic 

algorithm mode, and applied the concepts to the 

specific problems and algorithms to calculate the 

correlation between the two; in addition, the 

correlation of the solution also represents the 

correlation of the local optimal solution and the 

global optimal solution, as well as the coincident 

region of the search space. Therefore, the FDC 

algorithm analysis and the spatial search method 

can effectively improve the efficiency of problem 

solving and the accuracy of the solution. 

2.2 Fitness theory 

The fitness problem is composed of 

neighborhood structures. Its feasible fitness 

solutions are a curve or a 2D curved surface in the 

search space. It can also be said that the landscape 

of the fitness is a vector graph with marks. In the 

field of optimization, fitness is defined as a triad (Ω, 

N, f). Where Ω is the feasible solution set of the 

search space, f is the specific solution in the feasible 

solution set, N is the neighborhood structure of the 

solution, and for each feasible solution, a solution 

set has been specified. The neighborhood structure 

links the solutions in different search spaces 

together. In local search, the problem is generally 

solved based on one solution according to the 

neighborhood structure. In the fitness landscape, the 

types of the points are shown in Figure 1, and the 

evaluation indicators of the fitness is shown in 

Figure 2. The fitness landscape analysis helps to 

predict and understand the behavior of algorithm in 

spatial search. 
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Fig. 1 Types of points in fitness landscape 
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Fig. 2 Evaluation indicators of fitness 

 

Taking the knapsack problem as an example to 

obtain useful information in the search space, for 

each problem, calculate the distance between the 

optimal solution and the known solution so as to 

obtain its degree of correlation, then find the 

optimized information through the calculation 

results. The content of the backpack problem is: a 

mountaineer can carry outdoor supplies with a 

maximum weight of 30kg, assume that the 

mountaineer can carry 10 kinds of items, and the 

weight and price of each item are known, how to 

choose the items to be carried so that the things 

could function the best for mountaineer.  

According to the description of the problem, 

from the perspective of the maximum allowable 

weight, there are three handling methods, first, if 

the solution exceeds the maximum weight, the value 

of the excess item becomes zero; second, if the 

solution exceeds the maximum weight, then it is 

removed from the spatial search; third, if the 

solution exceeds the maximum weight, then 2 times 

the value of overweight item is deducted from the 

total price. The correlation coefficients calculated 

by the three methods is shown in Table 1. 

Table 1. Correlation coefficient results of the three 

methods 

Method Relevant coefficient 

First -0.31 

Second -0.63 

Third -0.45 

 

It can be seen from Table 1 that the correlation 

coefficients are all not higher than -0.31. Around 

the optimal solution, the landscape of the neighbor 

solutions is gradually reduced, this is because for 

solutions that satisfy the conditions, the total 

weights are close to the maximum allowable 

weight, one more item will cause overweight, which 

is why the correlation coefficient is relatively low. 

The correlation coefficient obtained by the second 

method is -0.63, which is the highest value among 

the three methods. There is no information that can 

indicate that the decline in the value of the 

backpack is not conducive to the increase of the 

item. When all the results are completed, and found 

that there’s unfavorable situation in which the 

weight has exceeded the limit, after the problem is 

tried many times, the unfavorable situation is 

weakened. The average correlation coefficient 

obtained by the third method is -0.45. The third 

method is different from the first two methods, it 

uses the penalty factor, and the correlation 

coefficient can indicate that the knapsack problem 

has higher fitness. The influence of the change of 

strategy and the penalty factor makes the weight 

and the value have an approximate range, so the 

correlation of the model is higher. 
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Fig. 3 The result of the first method 
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Fig. 4 The result of the second method 

 

The average values of the solutions of the 

distance between the solution and the optimal 

solution of the three methods are shown in Figures 

3, 4 and 5, from which we can see that, the longer 
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the distance from the optimal solution, the lower the 

average value, and the distance between the solution 

and the optimal solution is positively correlated 

with the average value of the item, and the solutions 

have similar structures in the search space. 
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Fig. 5 The result of the third method 

3 PRODUCTION SCHEDULING BASED 

ON DYNAMIC ANALYSIS 

ALGORITHM 

3.1 Algorithm selection 

The model of the production scheduling problem 

is: for the process in which machines of a certain 

number process workpieces of a certain number 

within a certain period of time, the goal is the 

completion time of all workpieces is the shortest, or 

the target cost is the minimum, or the 

manufacturing cost is the lowest, etc. The 

constraints are: each workpiece must complete all 

processing procedures, each machine can only 

process one workpiece at a time, the machine 

cannot be interrupted until the processing is 

completed. The 3×3 production scheduling 

extraction diagram is shown in Figure 6, and the 

3×2 production scheduling extraction diagram is 

shown in Figure 7. 
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Fig. 6 3×3 disjunctive graph model for scheduling 

problem 

 

In the production scheduling problem, a part of 

the problem has a large correlation with the feasible 

solution, the other part of the problem has no 

correlation with the feasible solution, and the same 

situation also exists in the structure. When we 

analyze the production scheduling problem, the 

workshop scheduling also have these problems in 

itself, and we need to analyze the globality of the 

problem. 
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Fig. 7 3×2 disjunctive graph model for scheduling 

problem 

 

When selecting the algorithm, since the 

production scheduling is a large-scale production 

activity, the multi-factor dynamic analysis 

algorithm is usually adopted; in this algorithm, 

crossover and mutation are the key operations that 

can change the structure. In the multi-factor 

dynamic analysis algorithm, the choice between 

crossover and mutation is especially important. 

When the solution of the problem has more 

correlation, after finding the local optimal solution, 

the crossover method can be used to search for the 

optimal solution. If the crossover method does not 

work, we can reduce the crossover in the 

neighborhood and increase mutation appropriately, 

so as to achieve the purpose of quickly finding the 

optimal solution. 
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Fig. 8 Dynamic test results of production scheduling 

 

As shown in Figure 8, for typical problems that 

need to be solved by mutation operation and cannot 

be solved by crossover operation, the obtained 

optimal solutions are different. For large-scale 

production scheduling problems, using only the 

mutation operation and not the crossover operation 

can yield better solutions, which proves that the 

feasible solutions have less similar structures. 

For the design of multi-factor dynamic 

algorithm, the following conclusions are obtained. 
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When analyzing the local optimal solutions of 

the problem, the near-optimal solutions have more 

identical or similar structures, which increase the 

crossover probability of the algorithm. Conversely, 

when only the mutation operation is applied to 

calculation, the local optimal solutions can be 

quickly found, and then turns to the crossover 

operation to further optimize the local optimal 

solutions, thereby finding the global optimal 

solution. The crossover and mutation algorithms 

should be rationally selected to dynamically adjust 

the production scheduling algorithm. 

3.2 Dynamic analysis algorithm for 

production workshop scheduling 

Based on the dynamic analysis algorithm, the 

solving ability of the multi-factor dynamic 

algorithm is adopted to dynamically adjust the 

algorithm, so as to quickly obtain the optimal 

solution of the production workshop scheduling. 

When estimating the search space structure, there 

are two situations, the first is that the specific 

problem randomly generates a group solution and 

optimizes it, if the structures of the solutions are 

generally the same, then it is speculated that there is 

only one global optimal solution, or the global 

optimal solutions are clustered in a small region, 

then fix the segment and recode, use the local 

search algorithm, increase crossover and reduce 

mutation to get the optimal solution; second, the 

feasible solutions are in multiple subsets, there’re 

more identical solutions in a same subset, and 

there’re fewer identical solutions in different 

subsets, indicating that the optimal solutions in the 

space are distributed all over the space. At this time, 

we need to find the optimal solutions in each subset 

and search for the rest part of the optimization 

algorithm in the sub-space, and finally obtain 

multiple global optimal solutions. 

According to the fitness landscape, the dynamic 

analysis algorithm is reasonably designed to solve 

the production scheduling problem. The design 

rules are as follows: first, generate M random 

solutions in the search space, and set the threshold 

and size of the Backbone as the basis for judging 

the type of the problem; second, use the 

optimization algorithm to iterate and get different 

feasible solutions; third, compare the feasible 

solutions, if its size is larger, go to step 4, otherwise 

go to step 5; fourth, select solutions with the same 

part from the feasible solutions and carries out local 

optimization calculation on them, meanwhile, 

increase crossover and reduce mutation probability; 

fifth, divide the feasible solutions into multiple 

subsets, reduce crossover probability and increase 

mutation, and continue the local optimization, then 

go back to step 4, the calculation steps are shown in 

Figure 9. 
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Fig. 9 Flow of the algorithm 

 

This paper takes a specific case as an example to 

analyze the problem of workshop scheduling in 

multi-factor dynamic analysis algorithm. The 

population size takes N=100, the threshold is 0.6, 

the best number is 12, the maximum number of 

iterations is 250, and the maximum number of 

allowed steps is 40. The C language programming 

was adopted to implement the operation, 20 DS-

class and DP-class standard test questions were 

adopted for the test, and the obtained calculation 

results are shown in Table 2. 

As can be seen from the table, for the results of 

the 20 standard test questions, DS01, DS07, DP10, 

and DP14 can quickly find the optimal solutions in 

a short time, the times are all within 10 seconds, and 

the solution speed is very fast. For the DS2 question 

which is more difficult, it obtained better results 

within an average time of 14.6 seconds, in the case 

of 30 runs, the optimal value was obtained 9 times. 

For the questions DP16-DP20 which are more 

difficult, no optimal solution has been found, 

indicating that the multi-factor dynamic analysis 

algorithm cannot truly reflect the fitness landscape 

of the problem, complex problems generally have 

very complicated fitness landscape, and it’s very 

difficult to get the optimal solutions. From the 

calculation results, the ideal results have been 

obtained in a limited time, and if the test parameters 

are properly adjusted, better results can be obtained. 
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Table 2. Calculation results of the multi-factor dynamic algorithm 

Problem Scale Historically Optimal Mean value Current optimum Margin ratio Time 

DS01 5×5 65 65 65 0 1.2 

DS02 10×5 939 939 940 0.0032 14.6 

DS03 10×10 977 977 978 0.0213 17.2 

DS04 10×15 1218 1218 1217 0.0341 22.9 

DS05 15×15 1260 1260 1259 0.0127 23.2 

DS06 15×20 1241 1241 1243 0.0087 25.2 

DP07 20×10 1241 1241 1241 0 6.7 

DP08 15×10 1190 1190 1193 0.0131 29.5 

DP09 15×10 1356 1356 1359 0.0024 13.4 

DP10 15×10 1784 1784 1786 0 17.9 

DP11 15×10 1850 1850 1853 0.0053 17.5 

DP12 15×10 1719 1719 1721 0.0051 9.6 

DP13 20×10 1721 1721 1722 0.0012 13 

DP14 20×10 1542 1542 1542 0 9.8 

DP15 20×10 1888 1888 1890 0.002 15.3 

DP16 20×10 1272 1305 1324 0.0212 33.4 

DP17 15×15 1419 1441 1451 0.0157 34.6 

DP18 15×15 1205 1248 1252 0.0244 37.8 

DP19 15×15 1236 1264 1274 0.0251 32.5 

DP20 15×15 1231 1252 1262 0.0113 32.9 

 

4 CONCLUSIONS 

Aiming at the problem that the production 

scheduling in the manufacturing industry is 

complicated and difficult to solve, this paper 

proposed an improved multi-factor dynamic 

analysis algorithm, analyzed the complexity and 

correlation of the production scheduling problem in 

the workshop, and constructed a model for the 

workshop scheduling problem. The main 

conclusions are as follows: 

(1) For the production scheduling problem of the 

workshop, the fitness landscape analysis method 

can help predict and understand the behavior of the 

algorithm in spatial search. The analysis of the 

knapsack problem shows that the longer the 

distance from the optimal solution, the lower the 

average value of the solutions of the problem, and 

the distance between the solution and the optimal 

solution is proportional to the average value of the 

item. 

(2) When analyzing the workshop production 

scheduling problem, the crossover and mutation 

algorithms should be selected reasonably and the 

production scheduling algorithm should be adjusted 

dynamically, so as to quickly find the local optimal 

solutions, and then further optimize to find the 

global optimal solution. 

(3) Using the multi-factor dynamic analysis 

algorithm designed according to the fitness 

landscape to solve the workshop scheduling 

problem helps to obtain ideal results for the 

scheduling problems, namely the feasible solutions 

of the problem; if the test parameters are properly 

adjusted, better results can be obtained. 
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