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ABSTRACT: The flexible job-shop scheduling problem (FJSP) is a hard optimization 

problem that mirrors the actual situation of production. Currently, many industrial production 

tasks have more than one objective. To maximize the profit margin, the enterprise must achieve 

the multiple objectives of each task simultaneously. After analyzing the problems in the FJSP, 

this paper applies the multi-objective memetic algorithm (MA) in an actual FJSP, and optimizes 

the solution process of the FJSP with minimal processing span and total cost. The proposed 

algorithm was compared with the traditional multi-objective optimization algorithm through 15 

groups of tests. The comparison shows that our algorithm outperformed the traditional 

algorithm. This research provides a feasible way to solve multi-objective FJSP. 
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1 INTRODUCTION 

The progress in manufacturing puts forward 

higher requirements on job-shop scheduling: satisfy 

customer demand for more complex products, while 

ensuring the profit-making of the job-shop 

(Remenyi and Sherwood-Smith, 1998). Job-shop 

scheduling refers to the regulation of the production 

process (Levinsohn and Petrin, 2003). The job-shop 

scheduling problem (JSP) is a core issue of the 

production management in the manufacturing 

industry (Chang and Peter, 2007). Faced with this 

problem, production resources should be allocated 

rationally to ensure smooth and efficient 

production, and timely measures should be taken in 

unforeseen circumstances to maintain production 

safety and optimize the cost allocation. After all, the 

scheduling plan directly bears on the production 

benefit of the enterprise (Dimelis, 2002). Since the 

dawn of industrial mass production, the JSP has 

been a research hotspot in the field of combinatorial 

optimization (Fattahi et al., 2007; Giovanni and 

Pezzella, 2010). 

In modern industry, the targets of production 

scheduling are often flow-shops or job-shops under 

strict constraints. Currently, many industrial 

production tasks have more than one objective. To 

maximize the profit margin, the enterprise must 

achieve the multiple objectives of each task 

simultaneously (Li and Huo, 2009; Pintrich, 2000). 

Besides the strict constraints and multiple 

objectives, the job-shop scheduling capacity face of 

the enterprise many other challenges, namely, the 

short supply of raw materials, the sudden failure of 

machines, the cancellation of orders or the insertion 

of rush orders. Therefore, the JSP is a combinatorial 

optimization problem with multiple constraints and 

multiple variables (Deb et al., 2005). 

With the increase of production scale and 

operations, it is increasingly difficult to solve the 

JSP effectively. The traditional production theory is 

no longer suitable for the complex production 

modes (Duncan, 1980). Instead, the flexible job-

shop scheduling problem (FJSP) has emerged with 

the development of modern manufacturing (Brussel 

et al., 1998; Yan, 2003). To shorten the processing 

span and enhance enterprise profit, the FJSP 

strategy should make full use of machines, 

especially idle ones, in production tasks, without 

increasing capital input (Kacem et al., 2002; 

Moslehi and Mahnam, 2011; Pezzella et al., 2008). 

In this paper, the traditional multi-objective 

optimization algorithm is optimized by the memetic 

algorithm (MA). Then, the optimized algorithm was 

applied to solve an FJSP. The results prove the 

feasibility and superiority of our algorithm. 

2 FJSP MODELLING 

2.1 Problem description 

The FJSP asks for minimizing the processing 

span and total cost of processing N jobs on M 

machines under a series of constraints, in which 

each job requires different operations. Most FJSPs 

have multiple objectives, due to the growing 
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complexity and variability of modern 

manufacturing tasks. 

There are two ways to solve a multi-objective 

FJSP, namely, dimensionality reduction and 

integrated solution. The former simplifies the 

problem by decomposing it into machine selection 

and operation sequencing, while the latter improves 

the production efficiency by adjusting the operation 

sequence and selecting the machines at the same 

time. 

As shown in Figure 1, the feasible solutions of 

the FJSP can be illustrated with a disjunctive graph 

G=(N, X, Y), where N are the nodes (operations), X 

are the directed edges (operation sequence for the 

same job; solid arrows), and Y are the disjunctive 

arcs (operation sequence for the same machine; 

dotted arrows). 

 

Fig. 1 Disjunctive graph on the feasible solutions of 

the FJSP 

 

In the disjunctive graph, the longest path 

between the start and the end of production stands 

for the processing span. It is an important indicator 

of the FJSP efficiency, and a key optimization 

target. 

2.2 Theoretical basis of multi-objective 

evolutionary algorithm 

To maximize the benefit in actual production, 

the job-shop scheduling plan should be optimized 

for multiple objectives. These objectives may have 

the relations of mutual promotion or mutual 

inhibition. However complex the relations are, the 

ultimate goal of the JSP is to optimize the 

processing span, total cost and efficiency with 

various algorithms. Instead of a unique solution, the 

multi-objective optimization problem has a set of 

Pareto optimal solutions. The multi-objective 

optimization problem can be described as: 

Objective function: 
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where x are D-dimensional decision variables; X is 

the decision space formed by the decision variables; 

y are the objective vectors; Y is the objective space 

formed by the objective vectors. The feasible 

domain of solutions depends on gi(x) and hj(x). 

2.3 Multi-objective optimization model 

The multi-objective evolutionary algorithm 

comes to solve multi-objective tasks. It is 

essentially a genetic algorithm (GA) that converges 

to optimal solution of a population, by searching 

and computing multiple individuals in the 

population. Therefore, this algorithm has been 

widely applied in multi-objective optimization 

problems. 

To minimize the processing span, the shortest 

path and time can be derived from the disjunctive 

graph on the production process. However, no 

algorithm should optimize towards a single 

objective in multi-objective optimization. 

Therefore, another objective, the minimal total cost, 

must be considered. The total cost of the job-shop 

equals the sum of the costs of all the nodes in the 

production process: 

,

1

,i {1, 2 , , } , j {1, 2 , , }

n

i j
Q N n n   L L  (5) 

After the multiple objectives have been 

confirmed, the next step is to configure the local 

search operator of the multi-objective function. The 

Pareto solution of each search should be assigned a 

suitable weight, such that high-quality solutions 

could be found according to the corresponding 

weight. The objective function of local search can 

be expressed as: 

g ( ) b  x m  (6) 

where m is a Pareto solution; b is the weight 

assigned to that solution. Thus, the two objectives 

can be combined into an integrated objective:  

21i
*b* bQCT

iJ


 (7) 

where CJi is a set of different paths; Qi is the cost of 

path i. Any path in CJi is less optimal than the 

shortest path CJ. Therefore, the above integrated 

objective method is further optimized in the next 

subsection. The optimized method compares the 

processing spans and costs of different paths, 

outputting the optimal results based on the MA. 



ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL.17, ISSUE 3/2019 

26 

2.4 MA-based model optimization 

The workflow of our multi-objective MA in the 

FJSP is illustrated in Figure 2 below. 

 

Fig. 2 The workflow of our multi-objective MA in the 

FJSP 

3 EXPERIMENTS AND RESULTS 

ANALYSIS 

3.1 General recommendations 

To verify its feasibility and effectiveness, the 

multi-objective optimization algorithm improved by 

the MA (our algorithm) was compared with the 

traditional multi-objective optimization algorithm 

(the traditional algorithm) through experiments. 

The test parameters were configured as follows: 

the population size, 150; the number of elite 

solutions, 5; the crossover probability, 0.85; the 

mutation probability, 0.05; the number of iterations, 

50; the intensity of local searches, i.e. the number of 

evaluations, 500. 

A total of 15 tests were carried out, and divided 

evenly into 5 groups. The test data are listed in 

Table 1. Both our algorithm and the traditional 

algorithm were applied to solve the FJSP. To reflect 

the diversity and convergence, the performance of 

the two algorithms were evaluated by hypervolume 

and the number of non-dominated solutions 

(solution number). 

Table 1. Parameter setting 

Test Number of operations Number of jobs Number of machines 

Test 1 (S01, S02, S03) 15 8 5 

Test 2 (S04, S05, S06) 27 8 8 

Test 3 (S07, S08, S09) 30 10 10 

Test 4 (S10, S11, S12) 48 15 10 

Test 5 (S13, S14, S15) 65 15 15 

 

Figure 3 compares the hypervolumes and the 

solution numbers of the two algorithms in the 15 

tests. The comparison shows that our algorithm 

clearly outperformed the traditional algorithm. This 

means the MA can effectively enhance the ability of 

the traditional algorithm to find better solutions to 

the FJSP. 
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Fig. 3 The hypervolumes and the solution numbers of 

the two algorithms 

 

The search intensity has a major impact on the 

performance of our algorithm. If the search intensity 

is too small, our algorithm cannot fully display its 

excellence. If the search intensity is too large, the 

search space will be so narrow as to suppress the 

search efficiency. 

Considering the different scales of the test 

groups, the most representative dataset of each 

group was selected to test the performance of our 

algorithm at different search intensities, aiming to 

identify the suitable range of search intensity. For 

small groups S01, S04 and S07, the search 

intensities were set to 50, 100, 200, 400, 600 and 

800, respectively; For large groups S10 and S13, the 

search intensities were set to 400, 600, 800, 1,000, 

1,200 and 1,400, respectively. The test results are 

displayed in Figures 4 and 5 below. 

As shown in Figure 4, with the growth in search 

intensity, the mean hypervolume of S01 increased 

first and then decreased, peaking at the search 

intensity of 600. However, the mean hypervolume 

of this group varied little, as the search intensity 

increased from 100 to 600. Therefore, the 100~600 

is the suitable range for the search intensity of this 
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group. For groups S04 and S07, the mean 

hypervolume exhibited similar trends and both 

peaked at the search intensity of 600. Hence, the 

suitable search intensity for these groups falls 

between 400 and 800. 
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Fig. 4 Test results on small groups 

 

As shown in Figure 5, with the growth in search 

intensity, the mean values of S10 and S13 both 

increased first and then decreased, and peaked at the 

search intensity of 1,200. 

The above results show that the suitable search 

intensity is positively correlated with the scale of 

search. If the search scale is large, an optimal search 

intensity can be identified; if the search scale is 

small, it is only possible to obtain an interval of 

optimal search intensity. 

 

Fig. 5 Test results on large groups  

 

To further prove the superiority of our 

algorithm, the smallest group S01 and the largest 

group S13 were selected as FJSPs, and solved by 

our algorithm and the traditional algorithm. The 

processing spans and total costs obtained by the two 

algorithms are displayed in Figure 6 below, where 

Traditional refers to the traditional algorithm and 

Memetic refers to our algorithm. 

As shown in Figure 6, our algorithm had a clear 

advantage over the traditional algorithm in both 

groups, and the advantage increased with the 

complexity of the multi-objective FJSP. 
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Fig. 6 The processing spans and total costs obtained by the two algorithms 

 

4 CONCLUSIONS 

This paper designs an optimization model for the 

multi-objective FJSP based on the MA, and 

optimizes the multi-objective optimization 

algorithm for the FJSP with minimal processing 

span and total cost. The main contributions of this 

research are as follows: 

(1) The features and difficulties of multi-

objective FJSP were analyzed in details. The 

minimal processing span was solved by the 

disjunctive graph. The multi-objective optimization 
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algorithm was improved by the MA. 

(2) Taking minimal processing span and total 

cost as the objectives, the author established an 

optimization model for the JFSP based on the MA, 

and designed the solution process. The experimental 

results show that our algorithm greatly 

outperformed the traditional algorithm and the 

advantage increased with the population size. 

5 REFERENCES 

►Brussel, H. V., Wyns, J., Valckenaers, P., 

Bongaerts, L., Peeters, P. (1998). Reference 

architecture for holonic manufacturing systems: 

prosa. Computers in Industry, 37(3), 255-274. 

►Chang, T. H., Peter, J. K. (2007). Misallocation 

and manufacturing tfp in china and india. MPRA 

Paper, 124(4), 1403-1448. 

►Deb, K., Mohan, M., Mishra, S. (2005). 

Evaluating the ϵ-dominance based multi-objective 

evolutionary algorithm for a quick computation of 

pareto-optimal solutions. Evolutionary 

Computation, 13(4), 501-525.  

►Dimelis, S. (2002). Foreign ownership and 

production efficiency: a quantile regression 

analysis. Oxford Economic Papers, 54(3), 449-469.  

►Duncan, G. M. (1980). Formulation and 

statistical analysis of the mixed, continuous/discrete 

dependent variable model in classical production 

theory. Econometrica, 48(4), 839-852.  

►Fattahi, P., Mehrabad, M. S., Jolai, F. (2007). 

Mathematical modeling and heuristic approaches to 

flexible job shop scheduling problems. Journal of 

Intelligent Manufacturing, 18(3), 331-342. 

►Giovanni, L. D., Pezzella, F. (2010). An 

improved genetic algorithm for the distributed and 

flexible job-shop scheduling problem. European 

Journal of Operational Research, 200(2), 395-408.  

►Kacem, I., Hammadi, S., Borne, P. (2002). 

Approach by localization and multiobjective 

evolutionary optimization for flexible job-shop 

scheduling problems. IEEE Transactions on 

Systems Man and Cybernetics Part C (Applications 

and Reviews), 32(1), 1-13.  

►Levinsohn, J., Petrin, A. (2003). Estimating 

production functions using inputs to control for 

unobservables. Review of Economic Studies, 70(2), 

317-341.  

►Li, L., Huo, J. Z. (2009). Multi-objective flexible 

job-shop scheduling problem in steel tubes 

production. Systems Engineering-Theory & 

Practice, 29(8), 117-126.  

►Moslehi, G., Mahnam, M. (2011). A pareto 

approach to multi-objective flexible job-shop 

scheduling problem using particle swarm 

optimization and local search. International Journal 

of Production Economics, 129(1), 14-22.  

►Pezzella, F., Morganti, G., Ciaschetti, G. (2008). 

A genetic algorithm for the flexible job-shop 

scheduling problem. Computers and Operations 

Research, 35(10), 3202-3212.  

►Pintrich, P. R. (2000). Multiple goals, multiple 

pathways: the role of goal orientation in learning 

and achievement. Journal of Educational 

Psychology, 92(3), 544-555.  

►Remenyi, D., Sherwood-Smith, M. (1998). 

Business benefits from information systems through 

an active benefits realisation programme. 

International Journal of Project Management, 16(2), 

81-98.  

►Yan, H. S. (2003). Practical solution approaches 

to solve a hierarchical stochastic production 

planning problem in a flexible automated workshop 

in china. IIE Transactions, 35(2), 103-115.  

 


