
ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL.21, ISSUE 4/2023 

27 

ANN-BASED SURFACE ROUGHNESS MODELLING OF 

AA7075-T6 SLOT MILLING: CUTTING TECHNIQUE 

EVALUATION 

Anastasios TZOTZIS
1
, Apostolos KORLOS

2
, Rajesh Kumar VERMA

3
 and Panagiotis 

KYRATSIS
1
  

1 
University of Western Macedonia, Product and Systems Design Engineering Department, Kila Kozani, 50100 

Greece, E-mail: a.tzotzis@uowm.gr, pkyratsis@uowm.gr 
2
International Hellenic University, Industrial Engineering and Management Department, Sindos Thessaloniki, 

57400, Greece, E-mail: apkorlos@ihu.gr 
3
Harcourt Butler Technical University, Department of Mechanical Engineering, Kanpur (U.P.), 208002, India, 

 E-mail: rkvme@hbtu.ac.in 

 

ABSTRACT: Surface roughness is considered to be an index of a part’s machined surface 

quality and thus it is widely used in the industry to evaluate both the machinability of a material 

and the performance of a cutting process. The current article, presents an investigation on the 

surface quality evaluation of 7075-T6 aluminium alloy (AA) slot milling with both up-milling 

and down-milling techniques, by utilizing carbide end mills. Moreover, the study includes the 

modelling procedure of the process, according to the artificial neural network (ANN) 

methodology. The study revealed that both cutting techniques performed equally, with a mean 

value of surface roughness close to 0.8422μm for up-milling and 0.8396μm for down-milling 

respectively. In addition, both up-milling and down-milling ANN models yielded predictions 

very close to the experimental results with relative error varying between −13.68% and 

15.71%. Concluding, the mean effects plots were employed to visualize the effect of each one of 

the three cutting parameters (spindle speed, feed and cutting depth) that were applied to the 

experiments, on the arithmetic mean value of surface roughness (Ra). It was found that both 

feed and depth of cut act increasingly on the surface roughness, whereas any increase in 

spindle speed generates the opposite result. 

KEYWORDS: AA7075, ANN, Slot Milling, Surface Roughness, Surface Quality, Up-milling, 

Down-milling 

 

1 INTRODUCTION 

Aluminium alloy 7075 (AA) can be heat-treated, 

yielding this way an alloy much stronger than 

carbon steel. Therefore, it is widely used in 

aerospace and applications, where a high strength-

to-weight ratio is mandatory. One of the most 

important parameters studied during the machining 

of AAs, is the surface quality in terms of surface 

roughness. 

 Subramanian et al. [1] studied the influence of 

typical cutting parameters, as well as tool geometric 

aspects, on the generated surface roughness during 

the end milling process of AA7075-T6. Moreover, 

the authors modelled the process by using the 

Response Surface Methodology (RSM). Yasar [2] 

utilized a combination of the Finite Element 

Method (FEM) and Gray Relational Analysis 

(GRA) for the optimization of the AA7075 surface 

roughness during drilling, in addition to other 

important cutting parameters. Garcia-Jurado et al. 

[3] examined the surface roughness in dry turning 

of A92024 AA, by analyzing the adhesion tool wear 

effects. Vakondios et al [4] studied the effects of 

different milling strategies on the produced surface 

quality, in ball end milling of AA7075-T6. An 

example study of the AA1100 micro-milling is the 

one by Kiswanto et al. [5]. The authors investigated 

the influence of the spindle speed, feed rate and 

machining time on the generated surface roughness 

and burr formation. Taguchi and regression 

methods complement the aforementioned 

methodologies and techniques in the surface 

roughness evaluation topic. Durakbasa et al. [6] 

utilized similar methods for the assessment of the 

surface roughness during AA7075 milling. The 

study presented modelling of the process with 

respect to the used tool cutting edge radius, 

geometry and standard machining conditions. A 

number of studies [7, 8] that exist in the literature 

related to AA7075 machining support the 

significance of the specific alloy. 

With the number of the AAs that are available 

worldwide in mind, as well as the significance of 
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the specific aluminium temper, the present paper 

aims to contribute towards the examination of the 

AA7075-T6 surface quality generated during the 

slot milling process. Moreover, it provides insight 

on the performance of the two typical milling 

methods, up-milling and down-milling. Finally, this 

study presents a model of the process, based on the 

Artificial Neural Network (ANN) method. Despite 

the fact that surface roughness has been widely 

studied for different materials with well-established 

tools and methods, ANN is considered to be a more 

sophisticated method compared to traditional 

statistical methods, yielding reliable results of high 

accuracy.  

2 MATERIALS AND METHODS 

2.1 Experimental testing 

Two sets of 27 slot milling tests each, were 

performed to evaluate the selected strategies, up-

milling and down-milling. The cutting tests were 

carried out with a vertical milling machine, 

according to the full factorial design, which 

comprises of three cutting parameters at three value 

levels. Table 1 shows the selected cutting conditions 

and the corresponding levels. Spindle speed, feed 

and cutting depth are considered to be standard 

parameters when dealing with milling and therefore 

they were chosen for this study. The equivalent 

values can be found in the manufacturer’s 

catalogue, being the recommended ones for the 

machining of aluminium. Specifically, the test 

material was AA7075-T6. Table 2 presents the most 

important mechanical properties of the selected 

temper. Two plates of similar dimensions, served as 

the workpieces. 

 

Table 1. The machining parameters 

Levels 
S 

(min−1) 

Vf 

(mm/min

) 

ap 

(mm) 

1 710 56 1 

2 1000 80 2 

3 1400 112 3 

 

Table 2. AA7075-T6 material properties [9] 

E 

(GPa) 

ρ 

(kg/m3) 
ν 

Ultimate 

tensile 

strength 

(MPa) 

Yield 

tensile 

strength 

(MPa) 

71.7 2,810 0.33 560 480 

 

Finally, Figure 1a depicts a sample series of nine 

cuts during down-milling, whereas Figure 1b 

illustrates the measurement procedure for the slots 

generated with the up-milling technique at 

1000min
−1

. The complete results of both sets are 

presented in Table 3, according to the applied 

cutting conditions.  

Surface roughness was the investigated output 

parameter of the study, since it is a widely studied 

index of surface quality. To measure surface 

roughness, DIAVITE DH-8 roughness gauge was 

utilized. Each slot was measured at three specific 

points, equally distributed on the slot length and 

then the mean value was calculated. Hence, a total 

of 162 measurements were performed. The 

arithmetic mean (Ra) was selected as the surface 

roughness parameter for comparison, since it is 

considered to be an effective to evaluate surface 

roughness [10]. 

 

Fig. 1. Sample cutting test (a) and surface roughness 

measurement (b). 

 

 

Fig. 2. The machine tool characteristics 
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To perform the cuts, 54 identical tools were 

used. Each one performed a single cutting test, 

creating a slot with length equal to 45mm. Figure 2 

illustrates the used tool, as well as includes the 

typical geometrical characteristics of the end-mill. 

The tool catalogue number is 19992 6.000, which 

corresponds to 45° chamfered end mills, ideal for 

slotting, with z=3, flute helix angle 45°, shank 

diameter equal to 6mm with e8 tolerance grade and 

effective cutting length 13mm.  

 

Table 3. The experimental tests and results 

 Input Output 

Test 

number 

S 

 (min−1) 

Vf 

(mm/min) 

ap 

(mm) 

Ra (μm) 

up-milling 

Ra (μm) 

 down-milling 

1 710 56 1 0.595 0.671 

2 710 56 2 0.790 0.783 

3 710 56 3 0.828 0.913 

4 710 80 1 0.880 0.957 

5 710 80 2 1.008 0.918 

6 710 80 3 0.975 0.977 

7 710 112 1 0.908 0.837 

8 710 112 2 1.294 1.226 

9 710 112 3 1.207 0.918 

10 1000 56 1 0.676 0.727 

11 1000 56 2 0.851 0.627 

12 1000 56 3 0.942 0.744 

13 1000 80 1 0.781 0.817 

14 1000 80 2 0.791 0.939 

15 1000 80 3 0.884 0.818 

16 1000 112 1 0.821 0.944 

17 1000 112 2 0.919 1.094 

18 1000 112 3 1.178 1.029 

19 1400 56 1 0.690 0.703 

20 1400 56 2 0.796 0.739 

21 1400 56 3 0.697 0.627 

22 1400 80 1 0.696 0.667 

23 1400 80 2 0.703 0.843 

24 1400 80 3 0.690 0.789 

25 1400 112 1 0.549 0.803 

26 1400 112 2 0.743 0.783 

27 1400 112 3 0.847 0.776 

2.2 ANN-based modelling 

A number of studies related to manufacturing 

processes [11–13] and especially to the surface 

roughness evaluation, reveal the robustness of the 

ANN modelling.  This study utilizes a network 

according to the feedforward, backpropagation 

method, since it is the most used method in 

problems, where non-linear parameters are 

involved. This method intends to minimize the 

difference between the actual and the net output of 

the network, by continuously adjusting the weights 
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of the linkages. The algorithm serving this purpose 

was proposed by Levenberg and Marquardt [14]. 

For both experimental sets, the obtained data were 

divided into three groups. One group, containing 

70% of the data, was used for the training of the 

model, another group with 15% of the data, for 

validation and the last one, for the model testing. 

The number of the neurons and the structure of the 

network were determined by means of trial and 

error. A number of runs were performed by utilizing 

neurons between 6 and 12 and the correlation value 

R was recorded. Table 4 includes the recorded 

values. Therefore, the 3-10-1 ANN structure was 

selected for both up-milling and down-milling 

models, according to the three input variables, ten 

hidden neurons and one output. The network 

structure used in the presented models is illustrated 

in Figure 3. 

 

Table 4. The results of the ANN structure trials  

Structure 
R-value for Ra 

up-milling down-milling 

3-6-1 0.93817 0.94520 

3-7-1 0.95710 0.91554 

3-8-1 0.95601 0.95722 

3-9-1 0.93984 0.94657 

3-10-1 0.99065 0.96931 

3-11-1 0.95114 0.96698 

3-12-1 0.95274 0.90041 

 

The hyperbolic tangent (tanh) transfer function 

was used in the developed model as the activation 

function, since it allows for a simplified mapping of 

the output (negative, neutral or positive), which in 

addition enables the centering of the data, 

facilitating this way the learning process. In the 

present models, the data were normalized between 

[−1, 1], in order to tackle any performance issues. 

Eq. 1 describes the applied activation function, 

whereas Eq. 2 expresses the result for the output 

variables, adjusted for the summation of the 

weighted data. Where z represents the output 

variable, Ra, Wi are the output layer weights for n 

hidden nodes, f(x) is the hyperbolic tangent 

activation function, for each numerical value of the 

hidden neurons Hi, and finally b is the bias of the 

output layer. 

 

 

Fig. 3. The ANN structure of the study 
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The normalization process of both the input and 

the output data, according to the activation 

function’s range, was carried out with the aid of the 

next formulas. Eq. 3 was used for the normalization 

of the input parameter or target result ynormalized, as a 

function of the actual input or target result y in 

accordance to the normalization coefficients α and 

β, which can be calculated with Eq. 4 and 5 

respectively. Where ymax and ymin are the maximum 

and minimum actual value of the input or target 

data accordingly. This process is especially useful 

when the input data levels are not symmetrical (i.e. 

56mm/min, 80mm/min and 112mm/min). In 

addition, it should be noted that the normalized 

data, must be denormalized with the same 

procedure after the training is complete, to acquire 

the actual output results.  

 

normalizedy y     (3) 
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The calculation matrices that are required to 

determine the arithmetic values of each one of the 

hidden neurons Hi, according to the generated 

weights of the input layer and the hidden layer  

biases, are represented by Eq. 6 and 7. 

Furthermore, the weights and biases of the output 

layer that were used with Eq. 2 are shown in Table 

5.  
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                                                                     Table 5. The weights and biases of the model 

z = Ra 

up-milling 

W1 W2 W3 W4 W5 W6 

1.2353 −0.94707 1.4553 −0.040083 −0.21114 −0.31758 

W7 W8 W9 W10 b  

1.4739 −0.09108

9 

0.12459 1.2896 −1.1776  

z = Ra 

down-milling 

W1 W2 W3 W4 W5 W6 

0.093285 −1.3191 −0.65406 −0.69848 −0.30512 −0.47258 

W7 W8 W9 W10 b  

1.018 0.49829 −0.56883 0.18604 −0.9487  

 

 

 

The regression plots for both up-milling model 

and down-milling are illustrated in Figure 4a and 4b 

respectively. The goodness of fit between the 

experimental and the predicted values is evident on 

both plots, since the predicted data points are very  

 

 

 

close to the zero-error line, represented by the 

dashed line. Furthermore, the correlation values for 

training, validation and testing, verify the high level 

of accuracy, suggesting that acceptable error values 

are expected by the model prediction.  
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3 RESULTS 

3.1 Surface roughness assessment 

 

To assess the surface quality of the machined 

aluminium plates, the surface roughness was 

measured with the gauge as described in section 2.1. 

The calculated mean values were then imported to a 

spreadsheet software in order to examine the 

performance between the two compared milling 

methods. The comparison is graphically illustrated 

in Fig. 5. In general, both methods performed 

approximately the same. However, the mean value 

for all 27 experiments carried out with the up-

milling method, was calculated equal to 0.8422μm, 

whereas with the down-milling method, was found 

to be 0.8397μm. In terms of the spindle speed, the 

feed and the cutting depth, the generated effects of 

their means were plotted in the graphs of Fig. 6. The 

main effects plot is an effective tool when 

considering the differences between the level means 

for a variety of cutting parameters [9, 15]. 

 

Fig. 4. The regression plots of the model: for up-

milling (a) and down-milling (b) 

 

Fig. 5. Comparison graph between the up-milling and the down-milling method 

 

Figure 6a illustrates the main effects plot for up-

milling, whereas Figure 6b for down-milling. 

Observation of the plots led to the following 

conclusions. First, it is evident that an increase in 

the spindle speed, acts decreasingly on the produced 
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surface roughness for both milling methods. 

Especially, spindle speed equal to 1400min
−1

, is 

responsible for the achievement of very low surface 

roughness.  

 

 

Fig. 6 The regression plots of the model: for up-

milling (a) and down-milling (b) 

 

This scheme is visible on both up-milling and 

down-milling techniques. On the contrary, higher 

feed values generate surface of lower quality.  

Moreover, down-milling seems to benefit from the 

feed value of 56mm/min. Finally, the increasing of 

depth of cut produces higher values of surface 

roughness. However, this increase declines after the 

2mm depth of cut. Especially during down-milling, 

the decline is considerable. Similar results were 

reported in the study [16] related to slot milling of 

AISI-H13 steel, especially on the effects induced by 

the feed and the depth of cut. 

3.2 Model evaluation 

The output of the ANN models was used for the 

comparison between the test results and the 

simulated values of roughness. The evaluation of 

the model prediction capacity was carried out with 

the mean absolute percentage error (MAPE). The 

absolute value of each error was estimated and then 

the mean value of the summation of the errors was 

obtained. Table 6 includes all computed absolute 

error values, as well as the MAPE for both cases. 

Considering the wide range of the machining 

conditions that the study covers, the MAPEs can be 

considered very low and thus both models exhibit 

very good correlation levels with the experimental 

output data. The MAPE for the up-milling method 

was found to be 2.67%, and for down-milling 

2.54%. This fact strengthens the statement that both 

models performed well in terms of their prediction 

abilities, are sufficiently fit and can be safely used 

for prediction purposes within the aforementioned 

limits.  

Table 6. Error data for the developed ANN models 

Test 

Absolute percentage error 

up-

milling 
down-milling 

1 0.19 2.51 

2 10.58 1.37 

3 0.07 0.46 

4 0.89 0.30 

5 0.13 1.00 

6 0.08 1.03 

7 0.12 0.10 

8 1.71 2.96 

9 6.05 0.56 

10 0.41 5.76 

11 0.12 8.38 

12 0.23 4.66 

13 0.33 0.27 

14 0.73 0.65 

15 15.71 0.33 

16 11.34 0.28 

17 0.09 0.53 

18 0.23 13.68 

19 0.34 2.18 

20 7.94 5.86 

21 0.38 9.21 

22 0.68 1.20 

23 0.45 0.53 

24 12.21 0.28 

25 0.43 0.02 

26 0.29 4.34 

27 0.24 0.18 

MAPE 2.67 2.54 

3.3 Model validation 

The reliability of the two models was examined 

by performing three extra experiments for each 

milling method, under arbitrarily selected 
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machining conditions from within the range of the 

study. The setup of the extra experiments, as well as 

the results and comparison with the predicted values 

are presented in Table 7. Despite the fact that the 

down-milling method exhibits higher values of 

relative error compared to the up-milling method, 

fact that is probably related to the lower correlation 

coefficient of the model, in general the reasonable 

calculated relative error between the ANN-based 

predicted values and the experimental results, prove 

the reliability of the models, as well as the 

robustness of the ANN method. Consequently, it is 

safe to assume that both models can be used to 

predict the surface roughness for any combination 

of the three applied parameters (spindle speed, feed 

and cutting depth), within the range of the study.  

 

 

Table 7. The setup of confirmation tests and the results 

Test 

No 

S 

(min−1) 

Vf  

(mm/min) 

ap 

(mm) 

up-milling down-milling 

Simulated 

Ra (μm) 

Experimental 

Ra (μm) 

Relative 

error % 

Simulated 

Ra (μm) 
 
Experimental 

Ra (μm) 

Relative 

error % 

1 900 106 1.6 0.9237 0.9450 −2.25 1.1330  1.0440 8.52 

2 1100 64 2.4 0.9230 0.8967 2.93 0.7184  0.8167 −12.04 

3 1200 92 1.2 0.6445 0.7256 −11.18 0.9640  0.8637 11.61 

4 CONCLUDING REMARKS 

In the present study, an experimental comparison 

was carried out between the up-milling and down-

milling cutting method during machining of 

AA7075-T6, with carbide flat end-mills. 

Furthermore, two ANN models were developed for 

the prediction of the surface roughness, one for each 

cutting method. In terms of the cutting strategy 

evaluation, both methods performed well, yielding 

surface roughness values relatively low for the 

machining process of aluminium. A mean value of 

0.8422μm was calculated for up-milling and 

0.8396μm for down-milling respectively, with 

regard to the total number of the experiments. 

Moreover, the investigation on the effects of the 

cutting parameters with respect to the generated 

roughness, revealed that higher values of spindle 

speed reduce the surface roughness. In contrast, 

shifting the feed increases the surface roughness. 

Finally, the depth of cut exhibited slightly different 

influence pattern compared to the other two 

parameters. Specifically, deeper cuts produce more 

rough surfaces. However, the increase in surface 

roughness seems to diminish as the depth of cut 

passes the 2mm limit. In addition, it should be noted 

that all three machining conditions have a strong 

effect on the generated roughness.  

The computed relative error between the 

simulated and the experimental values, proved both 

the reliability and robustness of the developed ANN 

models, within the scope of the study. For up-

milling it was found to be between −11.34% 

15.71%, whereas for down-milling between 

−13.68% and 9.21%.  

Since surface roughness is a parameter with 

strong significance in the industry, future work 

could possibly include comparison between a 

number of modern analysis methods such as fuzzy 

logic, Bayesian neural networks and deep learning.  
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7 NOTATION 

The following symbols are used in this paper: 

S = spindle speed 

Vf = feed 

ap = depth of cut 

Ra = surface roughness 

R = model correlation coefficient 

Wi = ANN output layer weight 

b = ANN output layer bias 

Hi = ANN hidden neuron 

 


