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ABSTRACT: This study examines the impact of porosity on the thermo-mechanical bending 

analysis of functionally graded rectangular plates (FGRP). The current theory suggests that 

only four unknown functions are involved, compared to five in other shear deformation theories, 

and the boundary conditions on the upper and lower surfaces of the plate do not require shear 

correction factors. It is assumed that the material properties of this plate (FGRP) vary 

continuously over the thickness of the plate according to a power law function in terms of the 

volume fractions of the constituents. The porosity distribution of the plates (FGRP) is uniform 

over their cross-sections. Using the concept of virtual work, the equilibrium equations of a plate 

(FGRP) are derived. Numerical results for the rectangular plates have been provided and 

compared to those found in the literature. The impact of aspect ratios and porosity volume on 

the bending and thermo-mechanical properties of the rectangular plates (FGRP) is examined. 

KEYWORDS: Analytical solutions, Functionally graded, (FGRP), Thermo-mechanical, Bending, 

Porosity. 
 

1 INTRODUCTION  

Functionally graded materials (FGMs) are an 

advanced type of composite material whose 

composition and microstructure vary progressively 

with location. This design ensures the structure has 

optimal mechanical and thermal performance. 

Recently, FGMs, which have compositions and 

structures that gradually change over the volume, 

resulting in corresponding changes in mechanical 

and thermal properties, have been widely used. Due 

to the significance and applications of FGM 

structures, understanding their responses is crucial. 

Several studies have analyzed the thermo-

mechanical behavior of FG plates. 

According to the literature, many researchers 

have discussed shear deformation theories such as 

first-order higher shear deformation theories 

developed by (Whitney et al., 1970) and (Nguyen et 

al., 2008), third-order shear deformation theory 

studied by (Reddy, 2000), and sinusoidal shear 

deformation theory presented by (Zenkour, 2006). 

This study models the thermo-mechanical 

behavior of both perfect and imperfect functionally 

graded rectangular plates (FGRP) under bending, 

employing a higher-order theory for normal and 

shear deformation. The material properties of these 

porous rectangular plates are influenced by varying 

temperature loads. The analysis of perfect and 

imperfect FGRP is conducted using the principle of 

virtual work according to the current theory, taking 

into account both porosity and thermal effects. 

Various parameters, including the porosity factor, 

are examined. The results obtained are then 

compared with findings from other researchers. 

2 METHODS AND THEORETICAL 

MODEL 

In this investigation, the power law function is 

used. The following is the application of power law 
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distribution and the basic law of component 

mixture: 
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Where 'k' is the power law index, a positive real 

integer, and 'z' is the distance from the mid-surface. 

Note that the volume fraction of ceramic is higher 

towards the upper surface of the plate and the 

volume fraction of metal is higher towards the 

bottom. Furthermore, according to equation (1), the 

upper surface of the plate (z = h/2) is ceramic, while 

the lower surface (z = -h/2) is metal. 

                     

 

 

Fig. 1 Geometry of the porous rectangular plate 

(FGRP). 

Based on the above assumptions, the 

displacement field is written as follows: 

 
0 1 2

0 3 4

( , , ) ( )

( , , ) ( )

( , , ) bb ss

uu xx yy zz uu zzθ f z θ

vv xx yy zz vv zzθ f z θ

ww xx yy zz w w

  

  

 

     

 , , ,b s b s
1 2 3 4

w w w w

x x y y

   
       

   
     

In this study the new function f(z) is presented in 

the following form: 
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In this study, an imperfect functionally graded 

(FG) material with a volume fraction of porosity, 

P(χ) , (0 ≤ P(χ) ≤ 1) is considered, distributed 

uniformly between metal and ceramic.  

    
( )

 ( ) ( )m c m c m

P
E z E E E E E V zz

2


    

  

(5)  

Ec and Em represent the properties of ceramics 

and metal, respectively. This power-law assumption 

reflects a basic rule of mixtures used to determine 

the effective properties of the ceramic-metal plate. 

 

The static equations can be derived using the 

principle of virtual displacements, which can be 

expressed in its analytical form as: 

                   0( U V )  
  

(6)  

Where δU is the variation of the strain energy; 

δV is the variation of the potential energy. The 

virtual displacements concept may be used to get 

the static equations. In its analytical form, it may be 

expressed as 
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(8)  

Where A is the upper surface.  

It can be observed that the displacement field in 

Eq. (2) involves only four unknowns (u0, v0, ws and 

wb). Linear deformations can be expressed as: 
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Eq. (10) may be used to write the component 

relations of a FG plate.  
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where ( xxζ
, yyζ

, 1,xyη
, 2,yzη

, 3,zxη )  and ( xxε
, 

yyε
, 1,xyγ

, 2,yzγ
, 3,zxγ ) are the stress and strain 

components, respectively.  

 

To address this issue, "Navier" assumes that the 

mechanical and thermal transverse loads {q} and 
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{T}, are represented as a double fourier series in the 

form of:  
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The following type of solution is assumed for 

applying the Navier solution procedure.                                 
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Where: UU, VV, Wb & Ws are arbitrary 

parameters to be determined with:  

λλ = mπ/a and μμ = nπ/b, «m» and «n» are 

mode numbers.  

3 NUMERICAL RESULTS AND 

DISCUSSION 

Zirconia & titanium, as shown in Table 1, were 

the materials taken into consideration.  

Table 1. Provides the material parameters that were 

utilized to make the FG plate. 

  

The current deflection results for the perfect FG 

square and rectangular plate are very similar to the 

results of other theories (Zenkour et al., 2019 & 

Belkorissat et al.,  2023) present in the Table 2. It is 

shown that the deflections values and rise with 

increasing heat loads (t22). 

Table 2: The deflection of Perfect P-FGM square and 

rectangular plates ( k=2 , t33=0) 

Theory 
t22 = 0 t22 = 100 

a=b 3a=b a=b 3a=b 

Zenkour et al. 

2019  0.3729 1.1820 7.2408 13.4032 

Belkorissat et 

al. 2023 0.3781 1.1958 6.9668 13.0560 

Present  0,37959 1.19845 6.96730 13.0577 

 

From Table 3, again, the deflection and stresses 

results of FGRP subjected to a mechanical load 

compare very well with the theory solutions (FSDT 

by  (Whitney et al. 1970), TSDT (Reddy et al. 

2000)and SSDT (Zenkour et al. 2006) ) for (FGRP) 

are consistent, it demonstrates the present model's 

validity. It is evident that the deflection and stress 

levels escalate with the increase in porosity values 

P(χ). 

Table 3. Comparisons of deflections and stresses of 

perfect and imperfect (FGRP), with (T = 0, k=0). 

Theory 

 

   Whitney et 

al. 1970 0,85892 0,51065 0,72949 −0,34377 

Reddy et 

al. 2000 0,85891 0,51545 0,72797 −0,42956 

Zenkour et 

al. 2006 0,85887 0,51362 0,72784 

 

−0,44327 

Present 

(P(χ)=0.0) 0,85889 0,51346 0,72796 -0,42955 

Present 

(P(χ)=0.1) 0,93185 0,513457 0,727954 

-

0,429549 

Present 

(P(χ)=0.2) 1,01835 0,513459 0,727961 -0,42955 

Present 

(P(χ)=0.3) 1,12255 0,513458 0,727961 

-

0,429549 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1,2

1,4

1,6

1,8

2,0

Imperfect

(=0)Perfect

 w

a/h

k=2, b=3*a, q
0
=100, t

11
=t

22
=t

33
=0  (P()=0.0)

 (P()=0.1)

 (P()=0.2)

 (P()=0.3)

  

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1,2

1,4

1,6

1,8

2,0

(=0)

Imperfect

Perfect

 w

a/h

k=2, b=3*a, q
0
=100, t

11
=0, t

22
=t

33
=10  (P()=0.0)

 (P()=0.1)

 (P()=0.2)

 (P()=0.3)

  

Properties  (Titanium, Ti-6Al-

4V) 
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ZrO2) 

E (Pa)  66.2*109 117.0*109 

ν 0.33 0.33 

α 10.3 ×(10−6/ ◦C). 7.11 ×(10−6/ 

◦C). 
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Fig. 2. Variation of deflection versus (a/h) for 

rectangular plate (FGRP). 

Fig. 2. illustrates how the deflection changes for 

various side-to-thickness ratios and porosity 

coefficient of perfect and imperfect and 

with/without a thermal load for (FGRP). For the 

(FGRP), the deflection of the (FGRP) decreases as 

the (a/h) increases. When the porosity parameter is 

increased under a thermal load, deflection decreases 

for some side-to-thickness ratio values. 
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Fig. 3. Variation of deflection versus aspect ratio for 

rectangular plate (FGRP). 

 

For (FGRP), as well as with and without thermal 

loads, we investigate deflection variation as a 

function of the geometric ratio (b/a), for a (a/h = 

10) and a power law index (k = 2), as shown in 

Fig.3. The results show that for both perfect and 

defective rectangular plate (FGRP), the deflection 

increase as the aspect ratio rises. We can see in this 

figure which effects thermal load has on the 

different aspect ratios (b/a) and which effects 

porosity has on those ratios. The thermal load has 

the most significant effects, while the porosity 

effects as significant. 
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Fig. 4. Variation of deflection versus of the porosity 

coefficient and different thermo-mechanic loading for 

rectangular plate (FGRP). 

 

Figure 4. illustrates how decreasing the 

dimensionless deflections of both perfect and 

imperfect rectangular plate (FGRP) is possible by 

raising the porosity parameter and thermo-mechanic 

loading. Furthermore, for the same value of the 

porosity parameter, the dimensionless deflection in 

the case of thermal load (t22=t33=20) is larger than 

that in the cases of t22=t33=5, 10 and 15. This is 

mostly because of where the porosity is and how 

important thermal loading is. 
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Fig. 5. Variation of axial stress and shear stress across 

the thickness of (FGRP). 
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Numerical results for FGM rectangular plates 

with different aspect ratios and porosity levels are 

presented. The results show that both the aspect 

ratio and the porosity significantly influence the 

bending and thermomechanical behavior of the 

plates. Plates with higher porosity levels exhibit 

lower stiffness and higher deflections under the 

same loading conditions. The temperature also 

plays a crucial role, with higher temperatures 

leading to increased deflections and stresses in the 

plates.  

4 CONCLUDING REMARKS 

The study concludes that the higher-order shear 

deformation theory is effective for analyzing the 

thermo-mechanical behavior of FGM plates with 

varying porosity. The results highlight the 

importance of considering both porosity and 

temperature effects in the design and analysis of 

FGM structures. Future research could focus on 

more complex loading conditions and the use of 

different FGM compositions to further understand 

their behavior. 
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6 NOTATION 

The following symbols are used in this paper: 
 a: length of the plate 

     b: width of the plate 
Ec: material properties of the ceramic 
Em: material properties of the metal 
f(z): warping function (transverse shear function) 

     f ‘(z) : first derivative of the warp function with 
respect to z 

h: total thickness of the plate 
k : power-law index 
V(zz) : volume fraction 
w: transverse displacement  
wbb: bending components 
wss: shear components  
 xx, yy, zz: coordinates  
 v: Poisson's ratio  

P(χ): porosity volume fraction   
 uu, vv, ww : displacement in the x,y and z 

directions, respectively 
 u0, v0, w0  : mid-plane displacements in x,y and 

z directions      
,  ,  xy yz zx  

 : distortion deformation 
,  xx yy         : deformation in the x, y direction  
,  xx yy  : normal stresses 
,  ,  

1 2 3xy yz yx  
: shear stress 

 


